Heavy-Duty Diesel Vehicle Emissions Modeling in California's EMFAC Model

Mobile Source Analysis Branch
Air Quality Planning and Science Division
California Air Resources Board

November 3, 2016

Outline

- Heavy Duty Diesel Vehicles in California
 - The need for NOx reduction
 - Emission contribution
 - Importance of emission controls under low load/low speed conditions
- California Emission Modeling
 - Zero mile rates
 - Deterioration
 - Speed Correction Factors
 - Vehicle activity
- Efforts to Improve HD Diesel Truck Emissions Modeling in EMFAC2017
- Low NOx Regulatory Support

Heavy Duty Diesel Vehicles in California

http://www.arb.ca.gov/planning/sip/2016sip/2016statesip.pdf

- Reaching Federal ozone standards in 2031 requires an 80 percent reduction in NOx emissions from today.
- Heavy-duty trucks over 8,500 pounds are currently responsible for about 33 percent of total statewide NOx emissions (all sources)
- ➤ A National Heavy Duty Low NOx Engine Standard can reduce NOx emissions from heavy duty vehicle (>8,500 lbs. GVWR) by approximately 30% in 2031.
 - A California-Only standard can only reduce emissions by 14%.

Aftertreatment Technologies Used to Meet Today's 2010 Engine Standards

- Current standard:
 - ❖ NOx: 0.20 g/bhp-hr
 - Selective Catalytic Reduction (SCR)
 - ❖ PM: 0.01 g/bhp-hr
 - Diesel Particulate Filter (DPF)

Diesel Emissions Control System

California Environmental Protection Agency

Air Resources Board

Heavy Duty Vehicles in California (Above 8,500 lbs. GVWR)

- ■2010+ Heavy Duty Vehicles (>8,500 lbs. GVWR)
- Pre-2010 Heavy Duty Vehicles (>8,500 lbs. GVWR)

2015
California Environmental Protection Agency

Air Resources Board

Calendar Year

Based on EMFAC2014 v1.0.7 All fuel types are included – Gasoline, Diesel, and Natural Gas

Heavy Duty Vehicles in California (Above 8,500 lbs. GVWR)

NOx Emissions - Calendar Year 2031

All fuel types are included - Gasoline, Diesel, and Natural Gas

Outline

- Heavy Duty Diesel Vehicles in California
 - The need for NOx reduction
 - Emission contribution
 - Importance of emission controls under low load/low speed conditions
- California Heavy Duty Emissions Modeling
 - Zero mile rates
 - Deterioration
 - Speed Correction Factors
 - Vehicle activity
- Efforts to Improve HD Diesel Truck Emissions Modeling in EMFAC2017
- Low NOx Regulatory Support

Emission Modeling

Modeling emissions from heavy duty vehicles consists of four major components:

- Zero-mile emission rate (ZMR) Fleet average UDDS emission rates while trucks are new
- Speed Correction Factors (SCF) A method to correct emission factors at different driving speeds (i.e., duty cycles)
- In-Use Emission Deterioration (DR) Increase of emissions over time within the in-use fleet caused by tampering, malfunctioning, and mal-maintenance of engine components, and emission control systems
- 4. <u>Activity</u> Metrics of vehicle operation such as vehicle miles traveled (VMT), hours of idling, number of trips, etc.

Emissions (tons/day) = Emission Rate x Activity Emission Rate (g/mi) = (ZMR + DR x Odometer) x SCF

In-Use Emission Measurements

- In-use vehicle emission testing is a key to ARB's emission inventory development
- In-use trucks are tested on a chassis dynamometer over six different cycles

Test Cycle/Mode	Average Speed (mph)	Duration (sec)	Length (mi)
UDDS	18.8	1063	5.55
Creep	1.8	253	0.12
Transient	15.4	668	2.85
Cruise	39.9	2,083	23.1
High Speed Cruise	50.2	757	10.5
Idle	0	600	N/A

ARB is also deploying PEMS to measure real-world emission rates

Zero Mile Emission Rates

Running Emission Rates

- Emission rates based on test data collected over UDDS cycle
- Test results back-projected to "zero-mile" using emission increase rates
 - For example if test data is collected from trucks with 60,000 miles, results are back-projected to estimate emissions rates for trucks at <u>zero miles</u> (i.e., zero mile emission rate)
- For 2007-2012 model years, zero-mile rates weighted by sales fractions of different certification levels

Idle Emission Rates

 Based on test data collected over idle cycle and corrected for different accessory loads

Start Emission Rates

Derived from on-road PEMS test data

Speed Correction Factors

- HD trucks are driven under a variety of different duty cycles depending on their vocational usage (line-haul vs. last mile delivery)
- Modeling emissions from trucks requires emission rates at different vehicle speeds
- Emissions associated with different driving cycles (i.e., speeds) are estimated using Speed Correction Factors (SCF)
- Speed correction factors in EMFAC are ratio of emission rates at other speeds relative to emission rate at 18.8 mph (UDDS)

Emissions Deterioration

(Engine Component and Emission Control System Failure)

- > Emissions increase over time
- For diesel engines, deterioration is caused by
 - Natural degradation of after-treatment systems
 - Tampering and mal-maintenance (T&M)
 - Component malfunction
- Deterioration rates are modeled as a function of
 - Frequency of engine tampering and malfunction
 - Emissions impact of tampering and malfunction

Model Year	2007-09	2010-12	2013+
	(DPF)	(SCR/DPF)	(SCR/DPF/OBD)
NOx Emission Increase over 1M Miles	113%	312%	220%

2010+ HDV Start Emissions

- SCR effectiveness is highly temperature dependent.
- 'Start' emission levels are produced before the SCR catalyst reaches its working temperature
- > For EMFAC2014, cold/warm start emissions are derived from on-road PEMS testing data
- > Start emissions are modeled using:
 - Emission rate per start (g/start)
 - Number of starts per day

* Number of starts per day

Start Emissions (g/day) =
Cold Start ER x # of Cold Starts +
Warm Start ER x # of Warms Starts

California Environmental Protection Agency

-Vehicle Speed SCR Inlet Temperature 400 Cumulative NOx 200 Steep NOx emissions at below light-off temperatures indicate start emissions 100 0:15 0:20 0:25 0:30 0:35 13 Time since engine start (hh:mm)

Heavy Duty Vehicle Activity

- Truck and Bus populations are based on:
 - Department of Motor Vehicles (DMV) Registration
 - International Registration Plan (IRP)

 GPS and Telematics data collected through contracted studies

Fleet turnover accounts for the impact of ARB's in-use regulations such as:

- ❖ 2014 Truck and Bus Rule
- Statewide Drayage Truck
- Solid Waste Collection Vehicles
- ❖ Public Agencies and Utility (PAU)
 California Environmental Protection Agency

Modeled NOx Emissions in 2031 2010+ Heavy Duty Diesel Trucks (Above 33,000 lbs. GVWR)

Source: EMFAC2014 v1.0.7

Outline

- Heavy Duty Diesel Vehicles in California
 - The need for NOx reduction
 - Emission contribution
 - Importance of emission controls under low load/low speed conditions
- California Emission Modeling
 - Zero mile rates
 - Deterioration
 - Speed Correction Factors
 - Vehicle activity
- Efforts to Improve HD Diesel Truck Emissions Modeling in EMFAC2017
- Low NOx Regulatory Support

Efforts to Improve HD Diesel Truck Emissions Modeling in EMFAC2017

- Dyno testing of late model HD trucks
- Truck & Bus Surveillance Program
- PEMS testing of late model HD trucks
- Contracted field studies (e.g., RSD, Tent study)
- Deterioration rates updates
 - Frequencies of tampering and mal-functions
 - Emission impact rates
- Collaborating with industry partners (e.g., Cummins Inc.)
- ARB/Cummins emission inventory workgroup

Low NOx Regulatory Support

- EMFAC model will be used to assess emission benefits associated with Low NOx standards
- Similar to other ARB's regulatory efforts, EMFAC model will be updated based on <u>latest available</u> data to support this regulation.
- Staff is currently seeking inputs related to available data sources on:
 - Low NOx diesel and CNG engines
 - Heavy duty truck emission deterioration

Contact Information

Sam Pournazeri

Manager | On-Road Model Development Section California Air Resources Board

EMFAC Team